		WPF 10 cool
		232918
Fabricante Fonte de calor		STIEBEL ELTRON Sole
Com aquecedor adicional		x
Aquecedor combinado com bomba de calor		
Potência térmica nominal sob condições climáticas mais frias para as	14/4/	
respetivas utilizações a média temperatura (PRATED)	kW	12
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a média temperatura (Prated)	kW	9
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a média temperatura	kW	9
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	9,6
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	9,2
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	9,9
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	9,6
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	9,1
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	10,1
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	9,9
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	9,5
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	10,3
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	10,1
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	10,0
Tj = temperatura bivalente sob condições climáticas mais frias (Pdh)	kW	9,5
Tj = temperatura bivalente sob condições climáticas médias (Pdh)	kW	9,1
Tj = temperatura bivalente sob condições climáticas mais quentes (Pdh)	kW	9,1
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (Pdh)	kW	9,1
Tj = Temperatura limite de funcionamento sob condições climáticas médias (Pdh)	kW	9,1
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (Pdh)	kW	9,1
Para bombas de calor ar-água: Tj = -15°C (se TOL< -20°C) (Pdh)	kW	9,1
Temperatura de bivalência sob condições climáticas mais frias (Tbiv)	°C	-15
Temperatura bivalente sob condições climáticas médias (Tbiv)	°C	-10
Temperatura de bivalência sob condições climáticas mais quentes (Tbiv)	°C	2
Eficiência energética sazonal do aquecimento ambiente em climas mais frios, cada uma para aplicações de temperatura média (η s)	%	144
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (ηs)	%	137
Eficiência energética sazonal do aquecimento de divisões em climas mais quentes para aplicações de temperatura média (η s)	%	136
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		3,55
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,97
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		4,03
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		3,56
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,83

Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		4,48
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,03
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais quentes (COPd)		3,28
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,87
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,60
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,21
Tj = temperatura bivalente sob condições climáticas mais frias (COPd)		3,30
Tj = temperatura bivalente sob condições climáticas médias (COPd)		2,83
Tj = temperatura bivalente sob condições climáticas mais quentes (COPd)		2,83
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (COPd)		2,83
Tj = Temperatura limite de funcionamento sob condições climáticas médias (COPd)		2,83
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (COPd)		2,83
Para bombas de calor ar-água: Tj= -15°C (se TOL< -20°C) (COPd)		2,83
Valor-limite da temperatura de funcionamento da água de aquecimento sob condições climáticas médias (WTOL)	°C	65
Consumo de corrente Estado de desativação (Poff)	W	0
Consumo de corrente estado desligado do termostato (PTO)	W	84
Consumo de corrente em modo de espera (PSB)	W	9
Consumo de corrente em estado de funcionamento com aquecimento do cárter (PCK)	W	0
Potência térmica nominal do aquecedor auxiliar sob condições climáticas médias (PSUP)	kW	0,0
Tipo de alimentação de energia de aquecedor adicional		elektrisch
Controlo da potência		fest
Nível de potência sonora, interior	dB(A)	48
Consumo anual de energia sob condições climáticas mais frias para aplicações de temperatura média (QHE)	kWh/a	7549
Consumo anualde energia sob condições climáticas médias para as respetivas utilizações a média temperatura (QHE)	kWh/a	5176
Consumo anual de energia sob condições climáticas mais quentes para aplicações de temperatura média (QHE)	kWh/a	3367
Fluxo de volume Fluxo da fonte de calor	m³/h	3