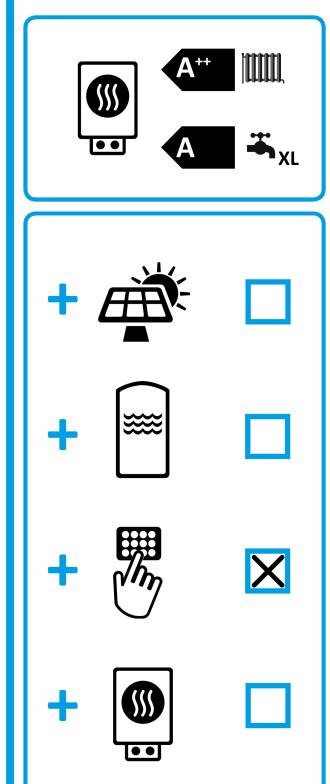
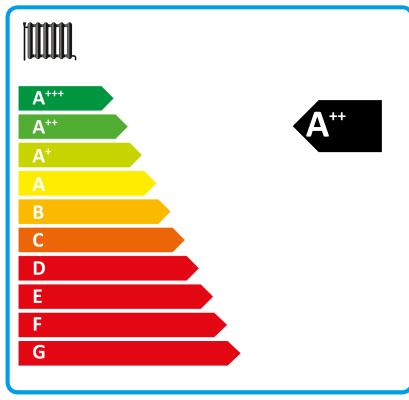
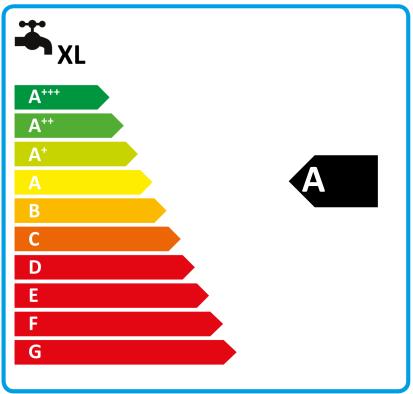


Ficha técnica do produto: Aquecedor combinado conforme regulamento (UE) N.º 811/2013 / S.I. 2019 N.º 539 / Programa 2)


		WPC 07 S
		232938
Fabricante		STIEBEL ELTRON
Perfil de carga		XL
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a média temperatura		A++
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a baixa temperatura		A+++
Classe de eficiência energética de preparação de água quente sob condições climáticas médias		А
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a média temperatura (Prated)	kW	7
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a baixa temperatura (Prated)	kW	8
Consumo anualde energia sob condições climáticas médias para as respetivas utilizações a média temperatura (QHE)	kWh/a	4113
Consumo de energia sob condições climáticas médias para as respetivas utilizações a baixa temperatura (QHE)	kWh/a	2964
Consumo anual de corrente sob condições climáticas médias (AEC)	kWh/a	1458
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (ηs)	%	131
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações a baixa temperatura (η s)	%	204
Eficiência energética de preparação de água quente (Ŋwh) sob condições climáticas médias	%	116
Nível de potência sonora, interior	dB(A)	48
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a média temperatura (PRATED)	kW	9
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a baixa temperatura (Prated)	kW	9
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a média temperatura	kW	7
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a baixa temperatura (Prated)	kW	8
Consumo anual de energia sob condições climáticas mais frias para aplicações de temperatura média (QHE)	kWh/a	5947
Consumo anual de energia sob condições climáticas mais frias para aplicações a baixa temperatura (QHE)	kWh/a	4238
Consumo anual de energia sob condições climáticas mais quentes para aplicações de temperatura média (QHE)	kWh/a	2667
Consumo anual de energia sob condições climáticas mais quentes para aplicações a baixa temperatura (QHE)	kWh/a	1918
Consumo anual de corrente sob condições climáticas mais frias (AEC)	kWh/a	1458
Consumo anual de corrente sob condições climáticas mais quentes (AEC)	kWh/a	1458
Eficiência energética sazonal do aquecimento ambiente em climas mais frios, cada uma para aplicações de temperatura média (Ŋs)	%	137
Eficiência energética sazonal do aquecimento de divisões em climas mais frios, cada uma para aplicações a baixa temperatura (ηs)	%	212
Eficiência energética sazonal do aquecimento de divisões em climas mais quentes para aplicações de temperatura média (ηs)	%	131
Eficiência energética sazonal do aquecimento ambiente em climas mais quentes para aplicações a baixa temperatura (Ŋs)	%	204




ENERG Υ UA EHEPΓИЯ · ενεργεια ΙΕ ΙΑ

WPC 07 S

STIEBEL ELTRON

Ficha técnica do produto: Aquecedor combinado conforme regulamento (UE) N.º 811/2013 / S.I. 2019 N.º 539 / Programa 2)

		WPC 07 S	
		232938	
Fabricante		STIEBEL ELTRON	
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (η s)	%	131	
Classe do regulador de temperatura		VII	
Contributo do regulador de temperatura para a eficiência energética de aquecimento de divisões	%	4	
Eficiência energética do aquecimento de divisões do sistema composto sob condições climáticas médias	%	135	
Eficiência energética do aquecimento de divisões do sistema composto sob condições climáticas mais frias	%	141	
Eficiência energética de aquecimento de divisões do sistema compostosob condições climáticas mais quentes	%	135	
Valor da diferença entre a eficiência energética de aquecimento de divisões sob condições climáticas médias e da mesma sob condições climáticas mais frias	%	6	
Valor da diferença entre a eficiência energética de aquecimento de divisões sob condições climáticas mais quentes e da mesma sob condições climáticas médias	%	0	
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a média temperatura		A++	
Classe de eficiência energética de aquecimento de divisões do sistema composto sob condições climáticas médias		A++	
Classe de eficiência energética de preparação de água quente sob condições climáticas médias		A	
Perfil de carga		XL	

		WPC 07 S
		232938
Fabricante		STIEBEL ELTRON
Com aquecedor adicional		x
Aquecedor combinado com bomba de calor		x
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a média temperatura (PRATED)	kW	9
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a média temperatura (Prated)	kW	7
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a média temperatura	kW	7
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,2
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,0
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	7,4
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,2
$Tj=2^{\circ}C$ potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	6,9
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	7,5
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,4
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,1
$T_j = 12^{\circ}C$ potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	7,6
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	7,5
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	7,4
Tj = temperatura bivalente sob condições climáticas mais frias (Pdh)	kW	7,1
Tj = temperatura bivalente sob condições climáticas médias (Pdh)	kW	6,9
Tj = temperatura bivalente sob condições climáticas mais quentes (Pdh)	kW	6,9
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (Pdh)	kW	6,9
Tj = Temperatura limite de funcionamento sob condições climáticas médias (Pdh)	kW	6,9
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (Pdh)	kW	6,9
Para bombas de calor ar-água: Tj = -15°C (se TOL< -20°C) (Pdh)	kW	6,9
Temperatura de bivalência sob condições climáticas mais frias (Tbiv)	°C	-15
Temperatura bivalente sob condições climáticas médias (Tbiv)	°C	-10
Temperatura de bivalência sob condições climáticas mais quentes (Tbiv)	°C	2
Eficiência energética sazonal do aquecimento ambiente em climas mais frios, cada uma para aplicações de temperatura média (ηs)	%	137
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (ηs)	%	131
Eficiência energética sazonal do aquecimento de divisões em climas mais quentes para aplicações de temperatura média (Πs)	%	131
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		3,40
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,86
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		3,84
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		3,41
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,73
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		4,28
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		3,85
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais quentes (COPd)		3,15
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,65
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,39
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,02
Tj = temperatura bivalente sob condições climáticas mais frias (COPd)		3,16
Tj = temperatura bivalente sob condições climáticas médias (COPd)		2,73

Tj = temperatura bivalente sob condições climáticas mais quentes (COPd)		2,73
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (COPd)		2,73
Tj = Temperatura limite de funcionamento sob condições climáticas médias (COPd)		2,73
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (COPd)		2,73
Para bombas de calor ar-água: Tj= -15°C (se TOL< -20°C) (COPd)		2,73
Valor-limite da temperatura de funcionamento da água de aquecimento sob condições climáticas médias (WTOL)	°C	60
Consumo de corrente Estado de desativação (Poff)	W	0
Consumo de corrente estado desligado do termostato (PTO)	W	55
Consumo de corrente em modo de espera (PSB)	W	10
Consumo de corrente em estado de funcionamento com aquecimento do cárter (PCK)	W	0
Potência térmica nominal do aquecedor auxiliar sob condições climáticas médias (PSUP)	kW	0,0
Tipo de alimentação de energia de aquecedor adicional		elektrisch
Controlo da potência		fest
Nível de potência sonora, interior	dB(A)	48
Consumo anual de energia sob condições climáticas mais frias para aplicações de temperatura média (QHE)	kWh/a	5947
Consumo anualde energia sob condições climáticas médias para as respetivas utilizações a média temperatura (QHE)	kWh/a	4113
Consumo anual de energia sob condições climáticas mais quentes para aplicações de temperatura média (QHE)	kWh/a	2667
Fluxo de volume Fluxo da fonte de calor	m³/h	1,76
Perfil de carga		XL
Consumo diário de corrente em climas mais frios (QELEC)	kWh	6,680
Consumo diário de corrente sob condições climáticas médias (QELEC)	kWh	6,680
Consumo diário de corrente sob condições climáticas mais quentes (QELEC)	kWh	6,680
Consumo anual de corrente sob condições climáticas mais frias (AEC)	kWh/a	1458
Consumo anual de corrente sob condições climáticas médias (AEC)	kWh/a	1458
Consumo anual de corrente sob condições climáticas mais quentes (AEC)	kWh/a	1458
Eficiência energética de preparação de água quente (Ŋwh) sob condições climáticas médias	%	116